The seamless integration of vision and language has been a focal point of recent advancements in AI. The field has seen significant progress with the advent of LLMs. Yet, developing vision and vision-language foundation models essential for multimodal AGI systems still need to catch up. This gap has led to the creation of a groundbreaking…
Researchers from the Massachusetts Institute of Technology(MIT), Meta, and Codec Avatars Lab have addressed the challenging task of single-view 3D reconstruction from a neural radiance field (NeRF) perspective and introduced a novel approach, PlatoNeRF. The method proposes a solution using time-of-flight data captured by a single-photon avalanche diode, overcoming limitations associated with data priors and…
Single-view 3D reconstruction stands at the forefront of computer vision, presenting a captivating challenge and immense potential for various applications. It involves inferring an object or scene’s three-dimensional structure and appearance from a single 2D image. This capability is significant in robotics, augmented reality, medical imaging, and cultural heritage preservation. Overcoming this challenge has been…
The research is rooted in the field of visual language models (VLMs), particularly focusing on their application in graphical user interfaces (GUIs). This area has become increasingly relevant as people spend more time on digital devices, necessitating advanced tools for efficient GUI interaction. The study addresses the intersection of LLMs and their integration with GUIs,…
The development of Multi-modal Large Language Models (MLLMs) represents a groundbreaking shift in the fast-paced field of artificial intelligence. These advanced models, which integrate the robust capabilities of Large Language Models (LLMs) with enhanced sensory inputs such as visual data, are redefining the boundaries of machine learning and AI. The surge of interest in MLLMs,…
Diffusion models have become the prevailing approach for generating videos. Yet, their dependence on large-scale web data, which varies in quality, frequently leads to outcomes lacking visual appeal and not aligning well with the provided textual prompts. Despite advancements in recent times, there is still room for enhancing the visual quality of generated videos. One…
Transformer models are crucial in machine learning for language and vision processing tasks. Transformers, renowned for their effectiveness in sequential data handling, play a pivotal role in natural language processing and computer vision. They are designed to process input data in parallel, making them highly efficient for large datasets. Regardless, traditional Transformer architectures must improve…
The use of diffusion models for interactive image generation is a burgeoning area of research. These models are lauded for creating high-quality images from various prompts and finding applications in digital art, virtual reality, and augmented reality. However, their real-time interaction capabilities are limited, particularly in dynamic environments like the Metaverse and video game graphics. …
Researchers from Alibaba, Zhejiang University, and Huazhong University of Science and Technology have come together and introduced a groundbreaking video synthesis model, I2VGen-XL, addressing key challenges in semantic accuracy, clarity, and spatio-temporal continuity. Video generation is often hindered by the scarcity of well-aligned text-video data and the complex structure of videos. To overcome these obstacles,…
Although it would be helpful for applications like autonomous driving and mobile robotics, monocular estimation of metric depth in general situations has been difficult to achieve. Indoor and outdoor datasets have drastically different RGB and depth distributions, which presents a challenge. Another issue is the inherent scale ambiguity in photos caused by not knowing the…