Skip to content Skip to sidebar Skip to footer

Meta AI Introduces Relightable Gaussian Codec Avatars: An Artificial Intelligence Method to Build High-Fidelity Relightable Head Avatars that can be Animated to Generate Novel Expressions

In a groundbreaking move, researchers at Meta AI have tackled the longstanding challenge of achieving high-fidelity relighting for dynamic 3D head avatars. Traditional methods have often needed to catch up when capturing the intricate details of facial expressions, especially in real-time applications where efficiency is paramount. Meta AI’s research team has responded to this challenge…

Read More

Google Research Unveils Generative Infinite-Vocabulary Transformers (GIVT): Pioneering Real-Valued Vector Sequences in AI

Transformers were first introduced and quickly rose to prominence as the primary architecture in natural language processing. More lately, they have gained immense popularity in computer vision as well. Dosovitskiy et al. demonstrated how to create effective image classifiers that beat CNN-based architectures at high model and data scales by dividing pictures into sequences of…

Read More

Researchers from Johns Hopkins and UC Santa Cruz Unveil D-iGPT: A Groundbreaking Advance in Image-Based AI Learning

Natural language processing (NLP) has entered a transformational period with the introduction of Large Language Models (LLMs), like the GPT series, setting new performance standards for various linguistic tasks. Autoregressive pretraining, which teaches models to forecast the most likely tokens in a sequence, is one of the main factors causing this amazing achievement. Because of…

Read More

Researchers from Stanford University and FAIR Meta Unveil CHOIS: A Groundbreaking AI Method for Synthesizing Realistic 3D Human-Object Interactions Guided by Language

The problem of generating synchronized motions of objects and humans within a 3D scene has been addressed by researchers from Stanford University and FAIR Meta by introducing CHOIS. The system operates based on sparse object waypoints, an initial state of things and humans, and a textual description. It controls interactions between humans and objects by…

Read More

Tencent Researchers Present FaceStudio: An Innovative Artificial Intelligence Approach to Text-to-Image Generation Specifically Focusing on Identity-Preserving

Text-to-image diffusion models represent an intriguing field in artificial intelligence research. They aim to create lifelike images based on textual descriptions utilizing diffusion models. The process involves iteratively generating samples from a basic distribution, gradually transforming them to resemble the target image while considering the text description. Multiple steps are involved, adding progressive noise to…

Read More

This AI Research from The University of Hong Kong and Alibaba Group Unveils ‘LivePhoto’: A Leap Forward in Text-Controlled Video Animation and Motion Intensity Customization

The researchers from The University of Hong Kong, Alibaba Group, and Ant Group developed LivePhoto to solve the issue of temporal motions being overlooked in current text-to-video generation studies. LivePhoto enables users to animate images with text descriptions while reducing ambiguity in text-to-motion mapping. The study addresses limitations in existing image animation methods by presenting…

Read More

Columbia and Google Researchers Introduce ‘ReconFusion’: An Artificial Intelligence Method for Efficient 3D Reconstruction with Minimal Images

How can high-quality 3D reconstructions be achieved from a limited number of images? A team of researchers from Columbia University and Google introduced ‘ReconFusion,’ An artificial intelligence method that solves the problem of limited input views when reconstructing 3D scenes from images. It addresses issues such as artifacts and catastrophic failures in reconstruction, providing robustness…

Read More

This AI Research Introduces a Novel Vision-Language Model (‘Dolphins’) Architected to Imbibe Human-like Abilities as a Conversational Driving Assistant

A team of researchers from the University of Wisconsin-Madison, NVIDIA, the University of Michigan, and Stanford University have developed a new vision-language model (VLM) called Dolphins. It is a conversational driving assistant that can process multimodal inputs to provide informed driving instructions. Dolphins are designed to address the complex driving scenarios faced by autonomous vehicles…

Read More

How can the Effectiveness of Vision Transformers be Leveraged in Diffusion-based Generative Learning? This Paper from NVIDIA Introduces a Novel Artificial Intelligence Model Called Diffusion Vision Transformers (DiffiT)

How can the effectiveness of vision transformers be leveraged in diffusion-based generative learning? This paper from NVIDIA introduces a novel model called Diffusion Vision Transformers (DiffiT), which combines a hybrid hierarchical architecture with a U-shaped encoder and decoder. This approach has pushed the state of the art in generative models and offers a solution to…

Read More

A New AI Research from CMU and Meta Introduces PyNeRF: A Leap in Neural Radiance Fields with Scale-Aware, Grid-Based Rendering

How can Neural Radiance Fields (NeRFs) be improved to handle scale variations and reduce aliasing artifacts in scene reconstruction? A new research paper from CMU and Meta addresses this issue by proposing PyNeRF (Pyramidal Neural Radiance Fields). It improves neural radiation fields (NeRFs) by training model heads at different spatial grid resolutions, which helps…

Read More